Applications of Finsler Geometry to Speed Limits to Quantum Information Processing
نویسندگان
چکیده
We are interested in fundamental limits to computation imposed by physical constraints. In particular, the physical laws of motion constrain the speed at which a computer can transition between well-defined states. Here, we discuss speed limits in the context of quantum computing. We review some relevant parts of the theory of Finsler metrics on Lie groups and homogeneous spaces such as the special unitary groups and complex projective spaces. We show how these constructions can be applied to analysing the limit to the speed of quantum information processing operations in constrained quantum systems with finite dimensional Hilbert spaces of states. We demonstrate the approach applied to a spin chain system.
منابع مشابه
Relative volume comparison theorems in Finsler geometry and their applications
We establish some relative volume comparison theorems for extremal volume forms of Finsler manifolds under suitable curvature bounds. As their applications, we obtain some results on curvature and topology of Finsler manifolds. Our results remove the usual assumption on S-curvature that is needed in the literature.
متن کاملZermelo Navigation and a Speed Limit to Quantum Information Processing
We use a specific geometric method to determine speed limits to the implementation of quantum gates in controlled quantum systems that have a specific class of constrained control functions. We achieve this by applying a recent theorem of Shen, which provides a connection between time optimal navigation on Riemannian manifolds and the geodesics of a certain Finsler metric of Randers type. We us...
متن کاملSolution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar
The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...
متن کاملMiron’s Generalizations of Lagrange and Finsler Geometries: a Self–Consistent Approach to Locally Anisotropic Gravity
Modern gauge theories of high energy physics, investigations in classical and quantum gravity and recent unifications of superstring theories (the so–called M– F– and S– theories) are characterized by a large application of geometric and topological methods. There are elaborated a number of Kaluza–Klein models of space–time and proposed different variants of compactification of higher dimension...
متن کاملZermelo Navigation in the Quantum Brachistochrone
We analyse the optimal times for implementing unitary quantum gates in a constrained finite dimensional controlled quantum system. The family of constraints studied is that the permitted set of (time dependent) Hamiltonians is the unit ball of a norm induced by an inner product on su(n). We also consider a generalisation of this to arbitrary norms. We construct a Randers metric, by applying a t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Found. Comput. Sci.
دوره 25 شماره
صفحات -
تاریخ انتشار 2014